EN FR
EN FR


Section: Partnerships and Cooperations

National Initiatives

"Action d'envergure"

  • HEMERA, 2010-2012

Leading action "Completing challenging experiments on Grid'5000 (Methodology)"

Experimental platforms like Grid'5000 or PlanetLab provide an invaluable help to the scientific community, by making it possible to run very large-scale experiments in con- trolled environment. However, while performing relatively simple experiments is generally easy, it has been shown that the complexity of completing more challenging experiments (involving a large number of nodes, changes to the environment to introduce heterogeneity or faults, or instrumentation of the platform to extract data during the experiment) is often underestimated.

This working group explores different complementary approaches, that are the basic building blocks for building the next level of experimentation on large scale experimental platforms. This encompasses several aspects.

ARC Inria

  • Meneur 2011-2013:

Partners: EPI Dionysos, EPI Maestro, EPI MESCAL, EPI Comore, GET/Telecom Bretagne, FTW, Vienna (Forschungszentrum Telekommunikation Wien), Columbia University, USA, Pennsylvania State University, USA, Alcatel-Lucent Bell Labs France, Orange Labs.

The goal of this project is to study the interest of network neutrality, a topic that has recently gained a lot of attention. The project aims at elaborating mathematical models that will be analyzed to investigate its impact on users, on social welfare and on providers' investment incentives, among others, and eventually propose how (and if) network neutrality should be implemented. It brings together experts from different scientific fields, telecommunications, applied mathematics, economics, mixing academy and industry, to discuss those issues. It is a first step towards the elaboration of a European project.

ANR

  • Clouds@home, 2009-2013

The overall objective of this project is to design and develop a cloud computing platform that enables the execution of complex services and applications over unreliable volunteered resources over the Internet. In terms of reliability, these resources are often unavailable 40% of the time, and exhibit frequent churn (several times a day). In terms of "real, complex services and applications", we refer to large-scale service deployments, such as Amazon's EC2, the TeraGrid, and the EGEE, and also applications with complex dependencies among tasks. These commercial and scientific services and applications need guaranteed availability levels of 99.999% for computational, network, and storage resources in order to have efficient and timely execution.

  • SPADES, 2009-2012

Partners: Inria GRAAL, Inria GRAND-LARGE, CERFACS, CNRS, Inria PARIS, LORIA

Petascale systems consisting of thousands to millions of resources have emerged. At the same, existing infrastructure are not capable of fully harnessing the computational power of such systems. The SPADES project will address several challenges in such large systems. First, the members are investigating methods for service discovery in volatile and dynamic platforms. Second, the members creating novel models of reliability in PetaScale systems. Third, the members will develop stochastic scheduling methods that leverage these models. This will be done with emphasis on applications with task dependencies structured as graph.

  • ANR SONGS, 2012-2015

Partners: Inria Nancy (Algorille), Inria Sophia (MASCOTTE), Inria Bordeaux (CEPAGE, HiePACS, RunTime), Inria Lyon (AVALON), University of Strasbourg, University of Nantes

The last decade has brought tremendous changes to the characteristics of large scale distributed computing platforms. Large grids processing terabytes of information a day and the peer-to-peer technology have become common even though understanding how to efficiently such platforms still raises many challenges. As demonstrated by the USS SimGrid project funded by the ANR in 2008, simulation has proved to be a very effective approach for studying such platforms. Although even more challenging, we think the issues raised by petaflop/exaflop computers and emerging cloud infrastructures can be addressed using similar simulation methodology.

The goal of the SONGS project (Simulation of Next Generation Systems) is to extend the applicability of the SimGrid simulation framework from Grids and Peer-to-Peer systems to Clouds and High Performance Computation systems. Each type of large-scale computing system will be addressed through a set of use cases and lead by researchers recognized as experts in this area.

Any sound study of such systems through simulations relies on the following pillars of simulation methodology: Efficient simulation kernel; Sound and validated models; Simulation analysis tools; Campaign simulation management.